Early vulnerability to ischemia/reperfusion injury in motor terminals innervating fast muscles of SOD1-G93A mice.
نویسندگان
چکیده
In mouse models of familial amyotrophic lateral sclerosis (fALS), motor neurons are especially vulnerable to oxidative stresses in vitro. To determine whether this increased vulnerability also extends to motor nerve terminals in vivo, we assayed the effect of tourniquet-induced ischemia/reperfusion (I/R) injury on motor terminals innervating fast and slow hindlimb muscles in male G93A-SOD1 mice and their wild-type littermates. These mice also expressed yellow fluorescent protein (YFP) in motor neurons. We report that in SOD1-G93A/YFP mice the motor terminals innervating two predominantly fast muscles, extensor digitorum longus (EDL) and plantaris, were more vulnerable to I/R injury than motor terminals innervating the predominantly slow soleus muscle. The mean duration of EDL ischemia required to produce a 50% reduction in endplate innervation in SOD1-G93A/YFP mice was 26 min, compared to 45 min in YFP-only mice. The post-I/R destruction of EDL terminals in SOD1-G93A mice was rapid (<2 h) and was not duplicated by cutting the sciatic nerve at the tourniquet site. The increased sensitivity to I/R injury was evident in EDL muscles of SOD1-G93A/YFP mice as young as 31 days, well before the onset of motor neuron death at approximately 90 days. This early vulnerability to I/R injury may correlate with the finding (confirmed here) that in fALS mice motor nerve terminals innervating fast hindlimb muscles degenerate before those innervating slow muscles, at ages that precede motor neuron death. Early vulnerability of fast motor terminals to I/R injury thus may signal, and possibly contribute to, early events involved in motor neuron death.
منابع مشابه
Functional Deficits in Motor Terminals and their Mitochondria in Mouse Models of Amyotrophic Lateral Sclerosis
of a dissertation at the University of Miami Dissertation supervised by Professor Ellen F. Barrett No. of pages in text. (126) Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which the upper and lower motor neurons die. Most studies aimed at elucidating the cause of this disease have focused on the motor neuron cell body. However, recent work has suggested that the disease...
متن کاملNerve Terminal Degeneration Is Independent of Muscle Fiber Genotype in SOD1G93A Mice
BACKGROUND Motor neuron degeneration in SOD1(G93A) transgenic mice begins at the nerve terminal. Here we examine whether this degeneration depends on expression of mutant SOD1 in muscle fibers. METHODOLOGY/PRINCIPAL FINDINGS Hindlimb muscles were transplanted between wild-type and SOD1(G93A) transgenic mice and the innervation status of neuromuscular junctions (NMJs) was examined after 2 mont...
متن کاملThe Psi(m) depolarization that accompanies mitochondrial Ca2+ uptake is greater in mutant SOD1 than in wild-type mouse motor terminals.
The electrical gradient across the mitochondrial inner membrane (Psi(m)) is established by electron transport chain (ETC) activity and permits mitochondrial Ca(2+) sequestration. Using rhodamine-123, we determined how repetitive nerve stimulation (100 Hz) affects Psi(m) in motor terminals innervating mouse levator auris muscles. Stimulation-induced Psi(m) depolarizations in wild-type (WT) termi...
متن کاملRapid loss of motor nerve terminals following hypoxia-reperfusion injury occurs via mechanisms distinct from classic Wallerian degeneration.
Motor nerve terminals are known to be vulnerable to a wide range of pathological stimuli. To further characterize this vulnerability, we have developed a novel model system to examine the response of mouse motor nerve terminals in ex vivo nerve/muscle preparations to 2 h hypoxia followed by 2 h reperfusion. This insult induced a rapid loss of neurofilament and synaptic vesicle protein immunorea...
متن کاملAltered in vitro proliferation of mouse SOD1-G93A skeletal muscle satellite cells.
BACKGROUND Amyotrophic lateral sclerosis (ALS) is the most common adult-onset neurodegenerative disease characterized by ascending muscle weakness, atrophy and paralysis. Early muscle abnormalities that precede motor neuron loss in ALS may destabilize neuromuscular junctions, and we have previously demonstrated alterations in myogenic regulatory factor (MRF) expression in vivo and in the activa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Experimental neurology
دوره 204 1 شماره
صفحات -
تاریخ انتشار 2007